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SUPPLEMENTARY MATERIALS 

SUPPLEMENTARY RESULTS 

Assessing the impact of depth of coverage of bacterial 16S rRNA genes  

The deep coverage of the V4-16S rRNA dataset allowed us to assess the 

contribution of rare (arbitrarily defined as having relative abundance <0.1%) as well as 

dominant taxa (>0.1%) to the composition of the gut microbiota in the three human 

populations. When ‘rare’ OTUs were used to compare adult and infant microbiota by 

UniFrac-based PCoA, the general clustering pattern of microbiota by age and 

culture/geography was identical to the pattern observed when the complete dataset or 

the dataset of species-level OTUs with abundances >0.1% were analyzed (Fig. S5).  

In  addition,  we  compared  the  generalization  error  of  the  Random  Forest  

classifier  obtained  when  using  Illumina  HiSeq  data  from  the  V4  region  for  8  different  

classification  tasks  at  6  different  rarefaction  depths  ranging  from  100  to  1,000,000  

sequences/sample  (Fig.  S6a).  As  expected,  at  high  rarefaction  depth  (1,000,000  

sequences),  the  Illumina-­‐‑based  OTUs  obtained  consistently  better  predictive  accuracy  

(lower  generalization  error)  than  at  lower  rarefaction  depth,  suggesting  that  increased  

sequencing  effort  improved  the  accuracy  of  the  classifiers  and  the  predictive  strength  of  

the  observed  OTUs.  However,  in  cases  where  clear  patterns  of  age  and  geography  were  

evident  (for  example,  differences  between  USA  vs  non-­‐‑USA  adults  and  adults  vs  

infants),  100  sequences/sample  was  enough  to  obtain  classifications  with  the  errors  

much  less  than  the  baseline  error  (Fig  S6a).  For example, when only 100 sequences per 

sample were used in the analysis, the geographic separation of USA vs non-USA adults 

was still evident in the PCoA analysis (Fig. S6b).   
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Finally,  rarefaction  analysis  did  not  reveal  saturation  when  we  included  samples  

with  at  least  2,000,000  V4-­‐‑16S  rRNA  sequences  (Fig.  S6c)  in  both  babies  (less  than  6  

months-­‐‑old)  and  adults.  This  suggests  that  despite  the  lower  complexity  of  the  fecal  

microbiota  in  babies,  complete  coverage  of  diversity  remains  to  be  described  with  more  

advanced  technologies  and  analytic  tools.  

Non-bacterial members of the fecal microbiota  

 Shotgun sequences were used to query the NCBI non-redundant nucleotide 

database (Blastn threshold E-value<10-5) to identify the representation of organisms that 

belong to domains other than Bacteria in the 110 sampled fecal microbiomes. Across all 

samples, 7±8% of reads mapped to non-bacterial sequences. The majority of these 

sequences belonged to Archaea and Fungi. Fig. S7 shows that the proportional 

representation of archaeal sequences were significantly higher in adults compared to 

children ≤3 years of age in Malawi and the USA (Mann-Whitney test; p<0.05; note that 

the differences between age groups were not statistically significant among 

Amerindians). The representation of fungi was significantly higher in adults compared 

to children in all populations; among adults, fungal sequences were significantly higher 

in Malawian and Amerindian versus USA microbiomes (Fig. S7). As databases of 

human gut-associated microbial genomes expand, it is likely that additional sequences 

may map to other archaea and eukaryotes.  

Comparison of sequenced microbiomes to those of 124 adult Europeans from the 

MetaHIT study  

We examined the extent to which the recent deep sampling of fecal microbiomes 

from 124 adults living in Spain and Denmark by the MetaHIT consortium (2-7.3 Gbp of 

shotgun sequence/fecal sample2) represents the gene content present in the microbiomes 

of all modern humans of all ages. Accordingly, we tested the extent to which this gene 

catalog recruited reads from each of our subjects, using the 90% nucleotide identity 
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criterion that Meta-HIT employed to identify reads as belonging to the same gene in the 

same microbial species2. On average, 91% of reads from the fecal microbiomes of adults 

living in the USA, 81% from Amerindian adult microbiomes, and 76% from Malawian 

adult microbiomes mapped to MetaHIT. The corresponding numbers for children below 

3 years of age were 79%, 72% and 78% respectively (Fig. S11). Additionally, 70 healthy 

individuals from the MetaHIT European cohort cluster with the USA population we 

studied (Fig. S12). 

Effects of breast milk versus formula feeding in USA twins 

 Epidemiologic studies have shown that formula feeding is more common in the 

USA than in a number of developing countries40,41. Random Forest analysis revealed 48 

OTUs discriminating the fecal microbiota of four USA twin pairs where both co-twins 

were breast-fed and five age-matched (2-5 month old) USA twin pairs who were 

formula-fed (Table S6e). Six of the 48 OTUs were overrepresented in the breast-fed 

babies and were assigned to the genera Bifidobacterium, Actinomyces, Erwinia and 

Haemophilus.  Shotgun sequences generated from the fecal microbiomes of formula-fed 

babies contained significantly fewer sequences that mapped to Bifidobacteria genomes, 

and more taxa belonging to the Firmicutes and Bacteroidetes compared to their breast-

fed counterparts (p<0.0001; Mann-Whitney test; Fig S20a). Overall, the fecal microbiota 

of formula-fed babies was significantly more diverse than age-matched breast-fed babies 

(p<0.001, ANOVA with bonferroni post-hoc test, Fig. S20b). 

We identified 93 KEGG ECs whose proportional representation differentiated 

formula- and breast-fed microbiomes (Random Forest classifier, Table S11). The 

majority of the 93 ECs that were overrepresented in formula-fed fecal microbiomes are 

involved in various aspects of carbohydrate metabolism (e.g., fructose, mannose) as well 

as nitrogen and amino acid metabolism (e.g., lysine biosynthesis). The proportional 

representation of genes involved in biosynthesis of cobalamin in formula-fed babies 

phenocopies what is observed in adults, i.e., higher than in breast-fed infants (Fig. S14, 
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S15). These findings highlight the need to use the types of biomarkers we have 

identified to conduct longitudinal metagenomic studies comparing the development of 

the microbiomes of formula- versus breast-fed individuals. The goal would be to 

determine whether differences between formula- and breast-fed children persist through 

adulthood, and the extent to which early exposure to formula heralds microbiome-

encoded metabolic programs that confer human physiologic phenotypes distinct from 

those of breast-fed children (e.g., ref.42). 
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SUPPLEMENTARY FIGURES 

Fig. S1 – Similarity between the fecal microbiota of children and adults from the same 

compared to different countries. UniFrac distances calculated from the Illumina V4-16S 

rRNA dataset between children ≤3 years old and adults from the same population 

compared to adults from the other 2 populations. Mean values ± SEM are plotted. 

**p<0.001, NS, not significant based on Student’s t-test with 1000 Monte Carlo 

simulations.  

 

Fig. S2 – PCoA of unweighted UniFrac distances for the fecal microbiota of 528 

sampled individuals. The analysis shown was based on the Illumina bacterial 16S rRNA 

gene dataset (V4 region). Colored by age (a), geographic location (b), formula- vs breast-

feeding (c), and gender (d). When adults are considered alone (e,f), or when babies are 

considered alone (g), there is clear separation among populations using unweighted 

UniFrac. 

 

Fig. S3 - Changes in the representation of bacterial taxa in the fecal microbiota as a 

function of age and geographic region. (a) Spearman correlations (Rho values) were 

calculated for the representation of each OTU, obtained from Illumina sequencing of the 

V4 regions of bacterial 16S rRNA genes, against age for each population (a Rho value of 

±1 indicates maximum correlation with age, a zero indicates minimum correlation). Rho 

values for Malawians are plotted against Rho values for Amerindians (black points) or 

residents of the USA (yellow-ochre points). Each point represents a 97% ID OTU; 

coordinates are correlations for the relative abundance of that OTU with age in 

Malawians (x-axis) and Amerindians or USA residents (y-axis). Spearman correlations 

relating populations: Malawi vs USA, Rho=0.65, p<10-15; Amerindians vs USA Rho=0.78, 

p<10-15; Malawi vs Amerindians Rho = 0.66, p<10-15. The lower panel presents examples 
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of the largest changes with age in all three populations (Bifidobacterium longum), and 

changes that are most pronounced in Malawi and Amerindians (OTU from the family 

Ruminococaceae). Note that the OTU matrix was rarified to 290,609 sequences/sample. 

(b) An analysis similar to that shown in panel a, but using shotgun reads mapped to 

1280 microbial genomes present in KEGG. (c) Analysis similar to (b) using shotgun 

reads mapped to 126 reference sequenced human gut microbial genomes.  

 

Fig. S4 – Clustering analysis of OTUs obtained from Illumina sequencing of the V4 

region of bacterial 16S rRNA genes. (a) Stacked bar plot of Bacteroides/Prevotella 

gradient. Each column shows relative abundances of Bacteroides (brown), Prevotella 

(purple), and other genera (orange) for a single gut community. Communities are 

ordered according to increasing Bacteroides relative abundance. Box plots below show 

the distribution of samples from each country. (b) Enterotype clustering algorithm 

applied to samples from all countries and all ages: classical multidimensional scaling of 

Jensen-Shannon distances between all sampled microbial communities. Samples are 

colored by age group, and lines connect samples to their putative enterotype cluster 

centroids (silhouette index = 0.5189325). (c) Cluster membership for partitioned 

subpopulations of increasing minimum age. Samples are sorted vertically first by 

putative cluster number, then by age within each cluster. Lines indicate samples that 

switched cluster membership after a partitioning step. 

 

Fig. S5 – PCoA of unweighted UniFrac distances for the fecal microbiota of 59 babies 

and 202 adults when only rare or abundant OTUs are considered. (a) Adult microbiota 

when 97%ID species-level OTUs with less than 0.1% relative abundance were 

considered. (b) Same as (a) but with taxa whose relative abundance was greater than 

0.1%. (c) Infant microbiota when taxa with less than 0.1% relative abundance were 

considered. (d) Same as (c) but with taxa whose relative abundance is greater than 0.1%.  
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Fig. S6 – Influence of depth and type of 16S rRNA sequencing on the results of 

Random  Forests  and  rarefaction  analyses.  (a)  Generalization  errors  using  97%ID  OTUs  

identified  from  Illumina  datasets.  The measure of the method’s success is its ability to 

correctly classify unseen samples, estimated by training it on a subset of samples, and 

using it to classify the remaining samples (cross-validation). The cross-validation error is 

compared to the baseline error that would be achieved by always guessing the most 

common category. For  each  of  8  comparisons,  we  estimated  the  generalization  error  of  

the  Random  Forests  classifier  using  OTUs  based  on  Illumina  V4-­‐‑16S  rRNA  sequences.  

Error  bars  show  standard  deviation  in  cross-­‐‑validation  error  under  repeated  rarefactions  

of  the  data.  We  show  the  expected  "ʺBaseline"ʺ  error  obtained  by  a  classifier  that  simply  

predicts  the  most  common  class  label,  as  well  as  the  Random  Forests  error  obtained  

when  different  sequencing  depths  were  used  (from  100  to  1,000,000  sequences/sample).  

(b)  PCoA  plot  of  UniFrac  distances  between  adult  fecal  microbiota  when  only  100  

sequences  were  used  from  each  sample.  (c)  Rarefaction  curves  for  fecal  samples,  each  

with  at  least  2,000,000  V4-­‐‑16S  rRNA  sequences.  Each  line  connects  an  average  number  (±  

SD)  of  observed  97%  ID  OTUs  at  each  rarefaction  depth  for  adults  (n=15  Malawians,  9  

Amerindians,  80  USA)  and  babies  (n=1  Malawian,  4  Amerindian,  5  USA).  

 

Fig. S7 – Non-bacterial members identified in fecal microbiota.  Shotgun sequences 

were used to query the NCBI nr database (Blastn e-value threshold cutoff, 10-5). The 

proportion of sequences that mapped to non-bacterial sequences was calculated for each 

age- and geographic group. The most abundant fungal sequences belong to the NCBI nr 

family level taxa Ascomycota and Microsporidia and were found in all three populations. 
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In NCBI nr, ‘other eukaryota’ refers to sequences that do not map to fungi, plants, 

arthropoda, mammals, and ‘other metazoa’. In USA microbiomes  ‘other eukaryota’ was 

most prominently represented by Hexamitidae, Trichomonadidae families and genus 

Entamoeba, while in Malawian and Amerindian microbiomes the most abundant group 

was “uncultured compost protozoan”. *** p<0.0005, **p<0.005, *p<0.05 (Mann-Whitney 

test). 

 

Fig. S8 – Analysis of Hellinger distances between fecal microbiome KEGG KO 

profiles. (a) Hellinger distances derived from KO profiles are shown for unrelated 

children ≤3 years of age and unrelated adults (n=9 children and 5 adults from Malawi; 

11 children and 5 adults from Venezuela; 10 children and 8 adults from USA). Mean 

values ± SEM are plotted. Abbreviations: * p<0.05; **p<0.005 (Student’s t-test with 1000 

Monte Carlo simulations). (b-e) PCoA plots derived from Hellinger distances. Counts 

were normalized to the total number of reads for each fecal microbiome sample thus 

accounting for sequences unassigned to KEGG. (b) All fecal microbiomes colored by diet 

plotted along PC1 and PC2. (c) Geographic separation is clear along PC3 and PC4.  The 

fecal microbiomes of adults (d) and babies (e) are colored by geographic location. 

 

Fig. S9 – PCoA and Procrustes analysis of V4-16S rRNA and shotgun datasets 

annotated with KEGG ECs (a), KEGG KOs (b) and COGs (c). Two spheres connected 

by a line represent two different data types from the same fecal sample. The colors of the 

lines indicate the type of data. In all cases, the grey component of the line is connected to 

the sphere representing 16S rRNA data, while the red component of the line is 

connected to the sphere corresponding to that sample’s functional annotation data (EC, 

KO, or COG). The overall goodness of fit (M2) for the different datatypes is noted in each 

panel (three dimensions were used to calculate the M2 value).  
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Fig. S10 – The number of KEGG ECs identified is similar in adult and infant fecal 

microbiomes while the fraction of microbiome shotgun reads with assignable EC 

annotations declines with age in all three populations. (a) The EC matrix was rarefied 

to 3,650 sequences per sample, and number of ECs was plotted against age for each 

sample. (b) Percent of sequences with KEGG annotation plotted against age. 

 

Fig. S11 – Percentage of fecal microbiome gene content in sampled members of the 

three populations that is also represented in the MetaHIT gene catalog generated 

from 124 adult Europeans. Percentage of shotgun pyrosequencing reads in each 

population that could be assigned to the MetaHIT gene catalog using the following 

Blastn parameters: ≥90% nucleotide sequence identity between the read and a member 

of the gene catalog, E-value <10-5, bitscore ≥50. 

 

Fig. S12 – PCoA plot of Hellinger distances between the KEGG KO profiles of adult 

USA, Amerindian and Malawian fecal microbiomes from the present study and from 

70 healthy European microbiomes in the MetaHIT dataset2. 

 

Fig. S13 – Age-related changes in the proportional representation of genes encoding 

ECs involved in folate metabolism. (a) KEGG pathway for folate metabolism. (b) 

UPGMA clustering (average linkage method) of fecal microbiomes of 24 babies and 26 

adults based on the relative abundances of genes encoding ECs shown in (a), normalized 

by Z-score across all datasets.  

 

Fig. S14 – Age-related changes in the proportional representation of genes encoding 

ECs involved in cobalamin biosynthesis. UPGMA clustering (average linkage method) 

of all 110 characterized fecal microbiomes, based on the relative abundances of ECs 

involved in cobalamin biosynthesis (normalized by Z-score across all datasets). The bars 



	
   11	
  

on the top indicate the age, breastfeeding status and geographic location of each human 

who was sampled. 

 

Fig. S15 – Diagram of KEGG pathway for cobalamin biosynthesis, indicating ECs 

whose proportional representation was higher in the fecal microbiomes of all adults 

and formula-fed USA infants (gray) compared to the fecal microbiomes of breast-fed 

babies in all populations. However, among adults, USA fecal microbiomes have higher 

relative representation of ECs in this pathway compared to adult 

Malawian/Amerindian microbiomes. p-values for the highlighted ECs can be found in 

Table S7. ECs that were discriminatory by both analyses are indicated with an asterisk. 

 

Fig. S16 – Spearman correlation between gut microbial species predicted to synthesize 

cobalamin and folate and their representation in fecal microbiomes at different ages 

and in different populations. UPGMA clustering of 126 sequenced gut genomes 

(average linkage method) based on the presence of the ECs involved in folate and 

cobalamin biosynthesis and metabolism (black squares). Spearman correlation 

coefficients of the proportional representation of these genomes with increasing age are 

shown on the right for each geographic location. A negative value indicates a decrease in 

the proportion of a taxon with increasing age. 

 

Fig. S17 – Age-related changes in the proportional representation of genes encoding 

ECs best discriminating baby and adult microbiomes according to both 

ShotgunFunctionalizeR and Random Forests analyses. UPGMA clustering (average 

linkage method) of fecal microbiomes, based on the relative abundances of ECs 

(normalized by Z-score across all datasets). The bars on the top indicate geographic 

location of each sampled human. 
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Fig. S18 – Diagram of KEGG pathway for riboflavin biosynthesis, indicating ECs 

(colored in red) shown in Fig.3a that are higher in the fecal microbiomes of Malawian 

and Amerindian compared to USA babies. 

 

Fig. S19 - Changes in EC representation in fecal microbiomes as a function of age and 

population. Spearman correlation coefficients (Rho values) were calculated for the 

proportional representation of each EC against age for each human population. Plotted 

are Rho values for Malawians (x-axis) against Rho values for Amerindians (black points) 

or USA residents (yellow points). Each point represents an EC and coordinates are Rho 

values for that EC in Malawians (x-axis) and Amerindians or USA residents (y-axis). 

Spearman correlation: Malawi vs USA, Rho=0.76, p<10-15; Amerindians vs USA 

Rho=0.66, p<10-15; Malawi vs Amerindians Rho = 0.78, p<10-15. Panels a-f show examples 

of ECs with similar or distinct Rho values for the three populations. The calculated 

Spearman correlation coefficient and the corresponding p-value for these examples are 

provided at the bottom of the figure. 

 

Fig. S20 – Comparison of bacterial diversity in the fecal microbiomes of breast-fed 

Malawian twins and breast-fed and formula-fed USA twins (1-5 months old). (a) An 

analysis of shotgun sequence datasets of fecal DNA using the reference database of 126 

sequenced human gut genomes. (b) Differences in bacterial diversity between USA 

formula-fed and breast-fed twins, based on V4-16S rRNA data (each microbiota sampled 

at 281,000 sequences). ***p<0.001 (ANOVA with bonferroni post-hoc test).
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SUPPLEMENTARY TABLES 

Table S1 – Diet survey conducted in two Amerindian and four Malawian villages. (a) 

Platanillal. (b) Coromoto. (c) Malawi.  

Table S2 – Summary of study participants and of fecal (a) bacterial 16S rRNA and (b) 

shotgun sequence datasets. Our analyses also included shotgun pyrosequencing data 

from 9 individuals representing 3 USA families, each comprised of lean adult female 

twins and their mother, who had been characterized in one of our earlier publications32, 

plus (ii) shotgun data from 1 fecal sample obtained from a single USA child who had 

been the subject of report describing the assembly of that child’s gut 

microbiota/microbiome5. 

Table S3  - P-values (Student t-test with 1000 Monte Carlo permutations) of 

unweighted UniFrac and Hellinger distances between the bacterial fecal communities 

of children and adults shown in Fig. 1b,c. UniFrac distances were calculated from the 

Illumina bacterial V4-16S rRNA dataset in part (a).  

Table S4  - List of the 126 reference human gut microbial genomes. 

Table S5  - Spearman correlations of relative abundances of microbial taxa in fecal 

microbiomes with age for each country. (a) 97%ID  OTUs  obtained  from  Illumina  

sequencing  of  the  V4  region  of  bacterial  16S  rRNA  genes.  Reads  that  map  to  microbial  

genomes  in  fecal  microbiomes  sampled  at  various  ages  from  each  country  using  (b)  a  

custom  reference  database  of  126  sequenced  human  gut  genomes  and  (c)  1,280  microbial  

genomes  from  the  KEGG  database.  

Table S6  - Results of Random Forests classifier of 97% ID OTUs (species-level 

phylotypes) that discriminate the fecal microbiota according to age and 
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geography/cultural tradition. The  rarefaction  depth  was  305,631  sequences/sample.  Ten  

even  rarefactions  were  performed  for  the  comparison.  (a)  Babies  vs  adults,  (b)  USA  vs  

non-­‐‑USA  adults,  (c)  Amerindian  vs  Malawian  adults,  (d)  Babies,  (e)  Breast-­‐‑fed  vs  

formula-­‐‑fed  USA  babies.  

Table S7 – ECs and KOs identified by Random Forests and ShotgunFunctionalizeR 

that exhibit significant age-associated differences.  (a) Shown are ECs with 

ShotgunFunctionalizeR p values < 0.0001 (adjusted for multiple comparison using 

Benjamini-Hochberg False Discovery Rate). ECs are sorted by p value. Mean importance 

of ECs identified by Random Forests is shown in the second column. (b) KOs with 

ShotgunFunctionalizeR p values < 1e-31 (adjusted for multiple comparison using 

Benjamini-Hochberg False Discovery Rate). 

Table S8  - ECs identified by Random Forests and ShotgunFunctionalizeR that exhibit 

significant population-specific differences in the fecal microbiomes of babies 

(individuals <6-months old). Shown are ECs with ShotgunFunctionalizeR p values < 

0.0001 (adjusted for multiple comparisons using Benjamini-Hochberg False Discovery 

Rate). ECs are sorted by p value. Mean importance of ECs identified by Random Forests 

is shown in the second column. 

Table S9 – ECs identified by Spearman correlation analysis that exhibit significant 

age-associated changes in their proportional representation in fecal microbiomes  

Table S10 – ECs identified by Random Forests and ShotgunFunctionalizeR that 

exhibit significant population-specific differences in their representation in the fecal 

microbiomes of adults. Mean importance of ECs identified by Random Forests is shown 

in the second column. ECs with with ShotgunFunctionalizeR p values < 0.0001 (adjusted 
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for multiple comparisons using Benjamini-Hochberg False Discovery Rate) are sorted by 

their p value. 

Table S11 – ECs identified by Random Forests and ShotgunFunctionalizeR that 

exhibit significant differences in their representation in the fecal microbiomes of 4 

breast-fed USA twin pairs versus 5 formula-fed USA twin pairs (2-5 months old). 

Shown are ECs with p values < 0.0001 (adjusted for multiple comparisons using 

Benjamini-Hochberg False Discovery Rate). ECs are sorted by their p value. 
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Fig. S1 – Similarity between the fecal microbiota of children and adults from the same compared to different 
countries. UniFrac distances calculated from the Illumina V4-16S rRNA dataset between children ≤3 years old and adults 
from the same population compared to adults from the other two populations. Mean values ± SEM are plotted. **p<0.001, 
NS, not significant based on Student’s t-test with 1000 Monte Carlo simulations. 



P
C

2 
(1

5%
)

PC1 (16%)

PC1 (16%)

P
C

2 
(1

5%
)

Breast-fed infants
Formula-fed infants (USA)
Other subjects

PC1 (25%)

PC
2 

(6
.6

%
)

PC
3 

(2
.9

%
)

PC1 (25%)

PC1 (15%)

PC
2 

(1
0%

)

Adults
Adults

Babies

b

c

e f

g

PC1 (16%)

P
C

2 
(1

5%
)

Female
Male

d

USA
Malawians

Amerindians

USA
Malawians
Amerindians

USA
Malawians
Amerindians

PC1 (16%)

P
C

2 
(1

5%
)

0.1 83
Age, years

a

USA
Malawians
Amerindians

Fig. S2 – PCoA of unweighted UniFrac distances for 
the fecal microbiota of 528 sampled individuals.  The 
analysis shown was based on the Illumina bacterial 16S 
rRNA gene dataset (V4 region). Colored by age (a), 
geographic location (b), formula- vs breast-feeding (c), 
and gender (d). When adults are considered alone (e,f), or 
when babies are considered alone (g), there is clear 
separation among populations using unweighted UniFrac.



Spearman correlation coefficient for all Malawians

Sp
ea

rm
an

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
 fo

r
al

l A
m

er
in

di
an

s 
or

 U
SA

Malawians vs Amerindians
Malawians vs USA

Malawians vs Amerindians
Malawians vs USA

1,280 KEGG microbial genomes

Malawians vs Amerindians
Malawians vs USA

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

Spearman correlation coefficient for all Malawians

Sp
ea

rm
an

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
 fo

r
al

l A
m

er
in

di
an

s 
or

 U
SA

a

b c

Malawians
Amerindians
USA

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

100

200

300

400

500

600

700

800
B.longum; OTU 591285

0.060.15 0.4 1 2.5 6 16 40

500

1500

2500

3500

4500

5500

6500

Family Ruminococcaceae; 
OTU 287666

Sp
ea

rm
an

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
 fo

r
al

l A
m

er
in

di
an

s 
or

 U
SA

Spearman correlation coefficient for all Malawians

0.060.15 0.4 1 2.5 6 16 40
Age, years

Age, years

N
um

be
r o

f r
ea

ds
N

um
be

r o
f r

ea
ds

126 Human gut microbial genomes

Fig. S3 – Changes in the representation of bacterial taxa in the fecal microbiota as a function of age and 
geographic region. (a) Spearman correlations (Rho values) were calculated for the representation of each OTU, obtained 
from Illumina sequencing of the V4 regions of bacterial 16S rRNA genes, against age for each population (a Rho value of 
±1 indicates maximum correlation with age, a zero indicates minimum correlation). Rho values for Malawians are plotted 
against Rho values for Amerindians (black points) or residents of the USA (yellow-ochre points). Each point represents a 
97% ID OTU; coordinates are correlations for the relative abundance of that OTU with age in Malawians (x-axis) and 
Amerindians or USA residents (y-axis). Spearman correlations relating populations: Malawi vs USA, Rho=0.65, p<10-15; 
Amerindians vs USA Rho=0.78, p<10-15; Malawi vs Amerindians Rho = 0.66, p<10-15. The lower panel presents examples 
of the largest changes with age in all three populations (Bifidobacterium longum), and changes that are most pronounced 
in Malawi and Amerindians (OTU from the family Ruminococaceae). Note that the OTU matrix was rarified to 290,609 
sequences/sample. (b) An analysis similar to that shown in panel a, but using shotgun reads mapped to 1280 microbial 
genomes present in KEGG. (c) Analysis similar to (b) using shotgun reads mapped to 126 reference sequenced human 
gut microbial genomes. 



Fig. S4 – Clustering analysis of OTUs obtained from Illumina sequencing of the V4 region of bacterial 16S rRNA 
genes. (a) Stacked bar plot of Bacteroides/Prevotella gradient. Each column shows relative abundances of Bacteroides 
(brown), Prevotella (purple), and other genera (orange) for a single gut community. Communities are ordered according 
to increasing Bacteroides relative abundance. Box plots below show the distribution of samples from each country. (b) 
Enterotype clustering algorithm applied to samples from all countries and all ages: classical multidimensional scaling of 
Jensen-Shannon distances between all sampled microbial communities. Samples are colored by age group, and lines 
connect samples to their putative enterotype cluster centroids (silhouette index = 0.5189325). (c) Cluster membership for 
partitioned subpopulations of increasing minimum age. Samples are sorted vertically first by putative cluster number, then 
by age within each cluster. Lines indicate samples that switched cluster membership after a partitioning step.
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Fig. S5 – PCoA of unweighted UniFrac distances for the fecal microbiota of 59 babies and 202 adults when only 
rare or abundant OTUs are considered. (a) Adult microbiota when 97%ID species-level OTUs with less than 0.1% 
relative abundance were considered. (b) Same as (a) but with taxa whose relative abundance was greater than 0.1%. (c) 
Infant microbiota when taxa with less than 0.1% relative abundance were considered. (d) Same as (c) but with taxa whose 
relative abundance is greater than 0.1%.
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Fig. S8 – Analysis of Hellinger distances between fecal microbiome KEGG KO profiles. (a) 
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Venezuela; 10 children and 8 adults from USA). Mean values ± SEM are plotted. Abbreviations: 
* p<0.05; **p<0.005 (Student’s t-test with 1000 Monte Carlo simulations). (b-e) PCoA plots 
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fecal microbiome sample thus accounting for sequences unassigned to KEGG. (b) All fecal 
microbiomes colored by diet plotted along PC1 and PC2. (c) Geographic separation is clear 
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Fig. S13 – Age-related changes in the proportional representation of genes encoding ECs involved in 
folate metabolism. (a) KEGG pathway for folate metabolism. (b) UPGMA clustering (average linkage method) of 
fecal microbiomes of 24 babies and 26 adults based on the relative abundances of genes encoding ECs shown in 
(a), normalized by Z-score across all datasets. 
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Fig. S14 – Age-related changes in the proportional representation of genes encoding ECs involved in cobalamin 
biosynthesis. UPGMA clustering (average linkage method) of all 110 characterized fecal microbiomes, based on the 
relative abundances of ECs involved in cobalamin biosynthesis (normalized by Z-score across all datasets). The bars on 
the top indicate the age, breastfeeding status and geographic location of each human who was sampled.
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Fig. S16 – Spearman correlation between gut microbial species predicted to synthesize cobalamin and folate and 
their representation in fecal microbiomes at different ages and in different populations. UPGMA clustering of 126 
sequenced gut genomes (average linkage method) based on the presence of the ECs involved in folate and cobalamin 
biosynthesis and metabolism (black squares). Spearman correlation coefficients of the proportional representation of these 
genomes with increasing age are shown on the right for each geographic location. A negative value indicates a decrease 
in the proportion of a taxon with increasing age.
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Fig. S17 – Age-related changes in the proportional representation of genes encoding ECs best discriminating 
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clustering (average linkage method) of fecal microbiomes, based on the relative abundances of ECs (normalized by 
Z-score across all datasets). The bars on the top indicate geographic location of each sampled human.
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USA babies.
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Fig. S19 – Changes in EC representation in fecal microbiomes as a function of age and population. Spearman 
correlation coefficients (Rho values) were calculated for the proportional representation of each EC against age for 
each human population. Plotted are Rho values for Malawians (x-axis) against Rho values for Amerindians (black 
points) or USA residents (yellow points). Each point represents an EC and coordinates are Rho values for that EC in 
Malawians (x-axis) and Amerindians or USA residents (y-axis). Spearman correlation: Malawi vs USA, Rho=0.76, 
p<10-15; Amerindians vs USA Rho=0.66, p<10-15; Malawi vs Amerindians Rho = 0.78, p<10-15. Panels a-f show 
examples of ECs with similar or distinct Rho values for the three populations. The calculated Spearman correlation 
coefficient and the corresponding p-value for these examples are provided at the bottom of the figure.
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Fig. S20 – Comparison of bacterial diversity in the fecal microbiomes of breast-fed Malawian twins and breast-fed and 
formula-fed USA twins (1-5 months old). (a) An analysis of shotgun sequence datasets of fecal DNA using the reference database 
of 126 sequenced human gut genomes. (b) Differences in bacterial diversity between USA formula-fed and breast-fed twins, based 
on V4-16S rRNA data (each microbiota sampled at 281,000 sequences). ***p<0.001 (ANOVA with bonferroni post-hoc test).
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